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Abstract: In this paper we show that it is possible to derive non-perturbative superpoten-
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is realized by a Euclidean D brane wrapping a non-trivial cycle upon which we also wrap

a single space-filling D brane. The standard problem of unwanted neutral fermionic zero

modes is evaded by the appearance of couplings to charged bosonic zero modes in the

instanton moduli action. Since the Euclidean D brane wraps a cycle which is not associ-

ated to any low energy gauge dynamics, it can not be interpreted as an ordinary gauge

instanton, but rather as a stringy one. By considering such a brane configuration at an

orbifold singularity, we can explicitly evaluate the instanton moduli space integral and find

a holomorphic superpotential term with the structure of a baryonic mass term.

Keywords: Nonperturbative Effects, Brane Dynamics in Gauge Theories, D-branes.

mailto:chrpet@chalmers.se
http://jhep.sissa.it/stdsearch


J
H
E
P
0
5
(
2
0
0
8
)
0
7
8

Contents

1. Introduction 1

2. The orbifold projection of the k = 1 instanton sector of N=4 SYM 3

2.1 The gauge sector 4

2.2 The neutral sector 5

2.3 The charged sector 6

2.4 The moduli space integral 6

3. Determining the prefactor 7

3.1 The gauge instanton 7

3.2 The stringy instanton 9

4. Evaluating the moduli space integral 10

4.1 Fermionic integration 11

4.2 Bosonic integration 11

5. Implications for the gauge dynamics 12

1. Introduction

There has been interesting recent developments in the context of string theory realizations

of instanton effects in gauge theories [1 – 6]. Non-perturbative superpotential terms which

are known to be generated by a single instanton, such as the ADS superpotential in N=1

SQCD for the case Nf = Nc − 1, have been explicitly derived using boundary conformal

field theory [7 – 9]. Such a gauge instanton can be realized by a Euclidean D brane (ED

brane) wrapped on a non-trivial cycle upon which the space-filling D branes that make up

the gauge group, in an engineered SQCD theory, have also been wrapped.

It has further been shown that certain stringy realizations lead to non-perturbative

superpotential terms generated by instantons which do not admit an obvious interpreta-

tion from an ordinary gauge theory point of view [10 – 15, 17 – 20]. Such cases are realized

by an ED brane wrapping a cycle which has no gauge dynamics associated to it and is

called a stringy instanton. It has been shown that it is possible to generate phenomeno-

logically interesting superpotential terms, such as Majorana mass terms for right handed

neutrinos [10, 11, 15, 21].

In the stringy case of an ED brane on a cycle which has no space-filling D brane

already wrapped on it, there generically arises a problem due to an excess of neutral

fermionic zero modes. The reason is that for an open string, with both endpoints on an
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ED brane that wraps an otherwise “unoccupied” cycle, does not feel the presence of the

space-filling D branes and therefore, gives rise to 4 fermionic massless modes, corresponding

to the supertranslations broken by the ED brane in an N=2 background. This implies that

instead of the 2 (Goldstino) zero modes required for the generation of a superpotential term

we get additional fermionic moduli fields that do not appear in the moduli action and hence

make the instanton moduli space integral vanish. The standard way to get rid of these

unwanted fermionic zero modes is to introduce an orientifold plane and thereby project

these extra modes out [16 – 18, 22, 23]. There have also been investigations concerning the

possibility of lifting these fermionic moduli fields by including background fluxes together

with gauge flux on the world volume of the ED brane [24 – 27].

In this paper, we will show that it is in fact possible to generate non-perturbative

superpotential terms from stringy instantons without introducing orientifolds or taking

closed string modes into account. As our main focus will be to show how the problem

of unwanted neutral fermionic zero modes can be evaded we will throughout the paper

only be considering local configurations and not be concerned with global issues such as

cancellation of D brane induced tadpoles which in general require the presence of orientifold

planes. We will work in a type IIB Z2×Z2 orbifold background, where we can use a simple

CFT description when studying the interactions between the massless modes of the open

strings stretching between the various branes. Although the N=1 non-chiral world volume

gauge theory this orbifold background gives rise to is not of particular phenomenological

importance, we believe that the results we obtain are quite general and applicable to many

other D brane systems in various Calabi-Yau backgrounds [28 – 30].

The key point in generating the non-perturbative superpotential term will be to con-

sider branes wrapping 3 different 2-cycles. We wrap N1 D5 branes on the first cycle, N2 on

the second and a single D5 brane on the third, N3 = 1. By also wrapping an ED1 on the

third cycle we are in the situation where we have an instanton which is not associated to any

low energy gauge dynamics, since there is only an IR free U(1) factor here. However, due to

the presence of bosonic zero modes between the ED1 brane and the single D5 brane, there

will appear couplings in the effective instanton moduli action which involve the unwanted

fermionic zero modes. The integration over these extra fermionic zero modes imposes con-

straints on the remaining moduli fields, analogous to the fermionic ADHM [31] constraints

one imposes on the moduli fields of an conventional gauge instanton, and we are left with an

integral which has the correct number (two) of neutral fermionic zero modes to make up the

integration measure over chiral superspace. When performing the remaining integrations,

we find that a holomorphic superpotential term with the structure of a baryonic mass term

is obtained for the case when N1 = N2, without introducing any orientifolds. We regard

the computation done in this paper as an explicit confirmation of the expectations raised

in [32, 33] for related configurations. We will see that, by including the baryonic mass term

as a non-perturbative part of the superpotential, the R-charge assignment of the chiral

superfields is uniquely fixed in the non-chiral quiver gauge theory under consideration and

moreover, an axial U(1) symmetry is broken. Note however that, in other configurations

where orientifolds were used, it has been shown that the inclusion of such a baryonic mass

term, in some instances, leads to dynamical supersymmetry breaking [16, 34 – 36].
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The plan of this paper is as follows. In section 2 we first review the field content of

the k = 1 instanton sector of the N=4 SYM theory, realized by a D(-1) instanton in the

world volume of N D3 branes, and then perform a Z2×Z2 orbifold projection to obtain our

N=1 SQCD-like gauge theory with one instanton. We review the open string spectrum for

such a configuration and write down the corresponding effective instanton moduli action

in the ADHM limit. In section 3 we discuss the prefactor of the possibly generated non-

perturbative superpotential term and also the power to which the chiral superfields should

appear in such a term. In section 4 we explicitly evaluate the moduli space integral for the

configuration when one of the cycles is wrapped by a single space-filling D brane together

with an instanton ED brane, and we find a non-vanishing holomorphic result. In section 5

we give a brief discussion of the implications on the gauge theory dynamics we should

expect from the non-perturbative superpotential term found in section 4.

2. The orbifold projection of the k = 1 instanton sector of N=4 SYM

In this section we will review the open string spectrum for a system with N D3 branes and

one D(-1) brane (k = 1) in a type IIB background [8, 5, 6, 37]. Since we are interested in in-

stanton calculus we Wick rotate our ten dimensional Minkowski spacetime, according to [8].

In the gauge sector the massless modes of the open strings, with its endpoints attached

to two of the N D3 branes, form an N=4 SYM multiplet [38]. In the NS sector, we obtain

the gauge field Aµ from the oscillators with spacetime indices pointing along the D3 brane.

The oscillators pointing in the 3 complex directions transverse to the D3 brane give, in

N=1 language, the three chiral superfields Φ1,2,3. All fields in the gauge sector are in the

adjoint representation of U(N).

The fields in the neutral sector correspond to the zero modes of the strings with

both ends on the D(-1) brane. These fields do not transform under the gauge group

of the D3 branes but instead in the adjoint representation of the instanton gauge group

which, for a single (k = 1) instanton, is simply U(1). In the same way as the N=4

SYM theory in 4 dimensions can be obtained from a dimensional reduction of the N=1

SYM theory in ten dimensions [39], the neutral sector can be obtained by continuing the

reduction down to zero dimensions. We denote the four bosonic moduli fields, longitudinal

to the D3 branes world volume, by aµ. Also, from the oscillators with spacetime indices

in the directions transverse to the D3 branes we get another six bosonic moduli fields

which we will however not be concerned with since they will be projected out by the

orbifold projection in the configurations we will consider later on. In the R sector, the

fermionic zero-modes are denoted MαA and λα̇A, where α/α̇ denote SO(4) Weyl spinor

indices of positive/negative chirality transforming in the fundamental representation under

the respective factor of SU(2)×SU(2)∼=SO(4) and A upstairs/downstairs denote SO(6)

Weyl spinor indices of negative/positive chirality which transform in the fundamental/anti-

fundamental representation of SU(4)∼=SO(6). Hence, the presence of the D3 branes have

broken the Wick rotated Lorentz group SO(10) to SO(4)×SO(6) and the ten dimensional

chirality of both fermionic fields have been chosen to be negative. We will also introduce

a triplet of auxiliary fields Dc that can be used to decouple quartic moduli interactions
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z1 z2 z3

h1 z1 −z2 −z3

h2 −z1 z2 −z3

Table 1: The action of the orbifold generators.

and linearize supersymmetry transformations but most importantly, it is crucial in order

to recover the standard ADHM results in the field theory (α′ → 0) limit [8, 6]. Since we

will only be dealing with a single instanton, the neutral sector fields are not matrix valued.

The charged sector fields come from the zero-modes of the strings stretching between

the D(-1) brane and one of the N D3 branes. For each such open string we have two

conjugate sectors distinguished by the orientation of the string. In the NS sector, where

the world-sheet fermions have opposite moding compared to the bosons, we obtain a bosonic

SO(4) Weyl spinor ωα̇ in the first four directions where the GSO projection picks out the

negative chirality. In the conjugate sector, we will get an independent bosonic SO(4) Weyl

spinor ω̄α̇ of the same chirality. In the R sector, we obtain two independent SO(6) Weyl

spinors µA and µ̄A, one for each conjugate sector, with chirality fixed by the GSO projection

such that both spinors transform in the fundamental representation of SU(4)∼=SO(6). Note

that the moduli fields in the charged sector with(out) a “bar” are in the anti-fundamental

(fundamental) representation of U(N), the world volume gauge group of the D3 branes.

Let us now perform an orbifold projection [40, 41] on the configuration described above.

We will choose the orbifold group to be Z2×Z2, which will give us a non-chiral N=1 quiver

gauge theory [42]. Since the orbifold projection was done in detail in [17] we will here only

state the action of the two generators h1 and h2 of the two Z2 (see table 1) and its regular

representations γ(h) acting on the Chan-Paton factors,

γ(h1) =











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











, γ(h2) =











1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1











(2.1)

where the 1’s denote Nℓ × Nℓ unit matrices, ℓ = 1, . . . , 4 and
∑4

ℓ=1 Nℓ = N . For a review

on fractional branes, see [43].

2.1 The gauge sector

In the gauge sector, the orbifold projection implies that the vector superfields are block

diagonal matrices of different size (N1, N2, N3, N4), one for each node of the quiver. Since

we will throughout the paper never occupy node 4 with fractional D3 branes, we set N4 = 0

from now on. Thus, our gauge group is U(N1)×U(N2)×U(N3). The three chiral superfields

– 4 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
8

a

3

21

λ

α α

ααµ

µ

µ

µµ

µ

µ

ωω

Φ

Φ

Φ

Φ

ΦΦ

13

.

. .
3

32

31

23

21 12

32

23
13

31

3333 M

Figure 1: The Z2 ×Z2 orbifold quiver gauge theory where the fractional D3 branes (green circles)

have been given rank assignment (N1,N2,N3,0). We have also included all neutral and charged

zero modes of the fractional instanton (red square) which is located at node 3, together with N3

fractional D3 branes.

Φi will have the following form

Φ1 =











0 Φ12 0 0

Φ21 0 0 0

0 0 0 0

0 0 0 0











,Φ2 =











0 0 Φ13 0

0 0 0 0

Φ31 0 0 0

0 0 0 0











,Φ3 =











0 0 0 0

0 0 Φ23 0

0 Φ32 0 0

0 0 0 0











(2.2)

where the non-zero entries Φℓm denote chiral superfields transforming in the fundamental

representation of gauge group U(Nℓ) and in the anti-fundamental of gauge group U(Nm).

The associated quiver diagram is displayed in figure 1.

2.2 The neutral sector

The Chan-Paton structure for the fractional D(-1) instantons will be the same as for the

gauge sector. However, since we will only be considering a single instanton at node 3, all

off diagonal neutral modes are absent, as they connect instantons at two distinct nodes.

Thus, we keep only the third diagonal component in the 4×4 Chan-Paton matrix of the

neutral fields, corresponding to the case where k3 = 1 and k1 = k2 = k4 = 0. The 4 bosonic

zero modes in the NS sector that remains, corresponding to the location of this fractional

instanton in the world volume of the fractional D3 branes, will (also here) be denoted by aµ.

For the fermionic moduli fields MαA and λα̇A we can choose a representation of the

Dirac matrices such that MαA and λα̇A for A = 1, 2, 3 have the Chan-Paton structure

of (2.2), while for A = 4 they are block diagonal [17]. Thus, since we are only interested
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in a diagonal component of the Chan-Paton matrix, the only neutral fields that survive

the projection are those with SU(4) index 4. We denote the third component of these

remaining fermionic moduli fields by Mα and λα̇.

2.3 The charged sector

The charged sector is now described by the open strings stretching from the fractional

instanton at node 3 to the fractional D3 branes, and vice versa. Since the charged bosonic

moduli fields do not carry indices which point in any of the directions the orbifold acts

on, the Chan-Paton factor will have a block diagonal structure and thus we will only find

surviving fields among the zero modes of the open strings between the fractional D(-1)3
and the D3 branes at node 3.1 Hence, we obtain 4N3 bosonic zero modes ωα̇, ω̄α̇.

The charged fermionic zero modes µA and µ̄A will display the same structure as in (2.2)

for A = 1, 2, 3, but they will be block diagonal for A = 4. This means that between the

fractional instanton and the N3 D3 branes at node 3 we have 2N3 fermionic zero-modes

µ33 and µ33. As the SU(4) indices will not be written explicitly, we simply note that these

charged fermions correspond to the SU(4) index 4. Between the instanton and the N1

D3 branes at node 1 there are 2N1 fermionic zero-modes µ13 and µ̄31, corresponding to

SU(4) index 2. Finally, between the instanton and the N2 D3 branes at node 2, we have

2N2 fermionic zero-modes µ23 and µ̄32, with SU(4) index 3. Note that, in order to ease

the notation, we do not write out the fundamental indices of the charged moduli fields

(without a “bar”), corresponding to the gauge group of the fractional D3 node the string

stretches from, and similarly for the anti-fundamental indices of the charged fields (with a

“bar”) stretching to the D3 branes.

2.4 The moduli space integral

We can now calculate tree level open string scattering amplitudes by inserting the vertex

operators for the moduli fields at the boundary of a disk, corresponding to the world volume

of the open string. In order to recover the standard ADHM result for an ordinary gauge

instanton we take the “ADHM limit”, implying that we, in addition to taking the field

theory limit α′ → 0, perform a particular rescaling of the moduli fields, see [6], and then

send g0 → ∞ while keeping the 4-dimensional D3 brane world volume gauge coupling fixed.

By summing over all amplitudes that survive this limit we recover the following effective

instanton moduli action for a single fractional instanton,

S1 = i (µ33ωα̇ + ωα̇µ33)λ
α̇ − iDc

(

ωα̇(τ c)β̇α̇ωβ̇

)

(2.3)

and the interaction terms between the charged sector and the chiral superfields are given

1The block diagonal structure of the Chan-Paton factors can also be understood from the fact that the

charged open strings stretching from the fractional D(-1)3 instanton to one of the fractional D3 branes,

which is not at node 3, would behave as 8 Dirichlet-Neumann strings with massive NS ground state since

the ED1 and D5 then wrap different 2-cycles.

– 6 –



J
H
E
P
0
5
(
2
0
0
8
)
0
7
8

by

S2 =
1

2
ωα̇
(

Φ31Φ13 + Φ31Φ13 + Φ32Φ23 + Φ32Φ23

)

ωα̇

+
i

2
µ31Φ13µ33 −

i

2
µ33Φ31µ13 +

i

2
µ32Φ23µ33 −

i

2
µ33Φ32µ23

− i

2
µ32Φ21µ13 +

i

2
µ31Φ12µ23 (2.4)

where we have both holomorphic and anti-holomorphic couplings. All terms in (2.3)

and (2.4) can be obtained by performing the Z2 × Z2 orbifold projection of the parent

k = 1 instanton sector of the N = 4 theory [17].

We will throughout the paper assume that it makes sense to take the ADHM limit of the

instanton moduli action. For a conventional gauge instanton, this is the limit that yields,

first of all, the standard ADHM measure on the instanton moduli space of the N = 4 D3

world volume gauge theory before the orbifold projection [8, 6], but also the one instanton

generated ADS superpotential of the N = 1 fractional D3 world volume gauge theory

after the Z2 ×Z2 orbifold projection [17]. Even though we will later on be concerned with

instantons that do not admit an obvious interpretation in terms of ordinary commutative

gauge theory they will however have similarities with ordinary gauge instantons since they,

for example, have charged bosonic moduli associated to them.

As suggested by [10, 8], if a non-perturbative superpotential is generated in the config-

uration described above, its form can be obtained by evaluating the moduli space integral

SW = C
∫

d{a,M, λ,D, ω, ω, µ, µ}e−S1−S2 . (2.5)

We will in the following two sections, first discuss the prefactor C, here inserted in order to

compensate for the dimension of the moduli space measure, and then explicitly evaluate

the integral (2.5).

3. Determining the prefactor

In this section we will start by considering the case when there are N3 > 1 fractional D3

branes together with the fractional instanton at node 3, corresponding to an ordinary gauge

instanton associated to the gauge group at node 3. We then turn to the stringy instanton

case, N3 = 1, and discuss the structure we expect the generated superpotential term to

have, using dimensional analysis.

3.1 The gauge instanton

In order to check that the action term in (2.5) is dimensionless we need to know the scaling

dimension of all the moduli fields that appear in the instanton measure. This can be

obtained by demanding a dimensionless moduli action in (2.3) [6, 18],

[aµ] = [ωα̇] = [ωα̇] = M−1
s , [Dc] = M2

s
[

Mα
]

= [µ] = [µ] = M−1/2
s , [λα̇] = M3/2

s . (3.1)

– 7 –
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where Ms = 1/
√

α′. For the configuration under consideration, with fractional D3 brane

rank assignment (N1,N2,N3,0) and fractional D(-1) rank assignment (0,0,1,0), the dimen-

sion of the instanton measure is given by

[

d{a,M, λ,D, ω, ω, µ, µ}
]

= M
−(na−

1

2
nM + 3

2
nλ−2nD+nω,ω−

1

2
nµ,µ)

s

= M
−(nω,ω−

1

2
nµ,µ)

s = M−(3N3−N1−N2)
s = M−β3

s (3.2)

since we have nω,ω = 4N3 charged bosons (ωα̇ and ωα̇) and nµ,µ = 2N3 + 2N1 + 2N2

charged fermions (µ33, µ33, µ13, µ31, µ23 and µ32) in addition to the instanton gauge field

aµ (na = 4), its superpartners Mα and λα̇ (nM = 2 and nλ = 2) and the nD = 3 auxiliary

fields Dc.2

In (3.2) we have denoted the dimension of the instanton measure by β3 since we

recognize it as the one loop β-function coefficient for the gauge coupling constant g3 of the

N=1 U(N3) vector multiplet, together with the contribution from N1 + N2 generations

of bi-fundamental chiral superfields, β3 = 3N3 − N1 − N2 [46]. The one loop β-function

coefficient β3 can also be obtained by calculating the annulus vacuum amplitude for the

open strings between the D(−1)3 instanton and the fractional D3 branes [10, 7, 18, 47 –

49]. This one loop running of the gauge coupling constant g3 is due to the massless states

circulating the loop and because we take the strictly local point of view, there are no

threshold corrections due to higher string states [50 – 52]. The absence of higher string

state contribution together with the fact that we are performing the integration over the

instanton zero modes explicitly in (2.5) implies that, in order to not overcount, there is no

contribution from the annulus diagrams to the prefactor C in (2.5).

The only missing piece of the prefactor is obtained by taking into account the vacuum

disk diagrams which have their boundaries completely on the fractional instanton at node

3 and contribute by an exponential of the topological normalization of a D(−1)3 disk,3

−8π2

g2

3

, where again g3 is the U(N3) gauge coupling constant, at the string scale Ms. Thus,

by combining the dimensionful factor Mβ3

s , compensating the dimension of the instanton

moduli measure (3.2), together with the vacuum disk exponential we can now identify the

prefactor in (2.5) with the one loop renormalization group invariant scale Λ of the U(N3)

gauge theory on the world volume of the fractional D3 branes at node 3,

C = Mβ3

s e
− 8π2

g2
3 = Λβ3 (3.3)

where we have suppressed the θ-angle dependence.

2Note that the lack of a reality condition for the spinors in this Wick rotated four dimensional N=1

scenario implies that M
α and λ

α̇ are complex and independent. However, we are interested in corrections

to the superpotential in the Minkowski space theory where, in contrast, a reality (Majorana) condition does

exist and relates M
α and λ

α̇ by complex conjugation. Therefore, even though we will not Wick rotate back

to Minkowski spacetime until the end, we have in (3.2) (and in the remaining text) counted the contribution

to the dimension of the instanton measure from M
α and λ

α̇ as if they were complex conjugates to eachother

(i.e. as we would count in Minkowski space). See, for example, [45] for a discussion on related issues.
3Such a vacuum disk amplitude is also given by minus the classical instanton action [53].
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Since we can identify the neutral zero modes aµ and Mα as coming from the super-

translations broken by the fractional instanton we will henceforth denote them by xµ = aµ

and θα = Mα. Thus, we can pull out these modes from the moduli integral in (2.5) and

obtain the measure over chiral superspace d4xd2θ. This allows us to determine to which

power the chiral superfields will appear in the instanton generated superpotential term,

SW =

∫

d4xd2θ Wnp (3.4)

where the non-perturbative superpotential is given by

Wnp = Λβ3

∫

d{λ,D, ω, ω, µ, µ}e−S1−S2 ∼ Λβ3Φ−β3+3 . (3.5)

This is the usual form of the (Nf = Nc−1) ADS superpotential [54, 55], which is generated

by an instanton when N1 + N2 = N3 − 1, where Nf = N1 + N2 is the number of flavors

and Nc = N3 is the number of colors. Using this constraint, we note that the power to

which the chiral superfields in (3.5) appear is negative, implying that the majority of fields

will appear in the denominator, as expected, since such a term is generated by a gauge

instanton. In the remainder of this section, we will consider the N3 = 1 case, where the

non-perturbative superpotential term is generated by an instanton which does no longer

have an obvious gauge theory interpretation.

3.2 The stringy instanton

Let us now turn to the main focus of our study, which is the case when we only have a

single fractional D3 brane at node 3, N3 = 1, where the instanton is located. There is no

longer any low energy gauge dynamics associated with the third node since the U(1) factor

is IR free.

From the dimensional counting of the moduli measure in (3.2) we see that, for N3 = 1,

the coefficient to which dynamical scale Λ in (3.3) appears is (3−N1 −N2). Although this

coefficient can no longer be interpreted as an ordinary one loop β-function coefficient, we

can conclude that if it was possible to generate a holomorphic superpotential term for this

configuration, it would have the following structure,

W s
np ∼ Λ3−N1−N2

string ΦN1+N2 . (3.6)

We have here labeled the scale Λ with the subscript “string” in order to indicate the fact

that it no longer has an ordinary gauge theory interpretation, but is of stringy origin.

Since the power to which the chiral superfields in (3.6) appear is positive we conclude that

majority of fields will appear in the numerator and hence such a superpotential term can

not be generated by an ordinary gauge instanton. Note that the only way to satisfy the

ADS constraint N1 + N2 = N3 − 1 for N3 = 1 is to set the number of flavors N1 = N2 = 0.

Note also that the instanton disk vacuum amplitude can no longer be interpreted as the

instanton classical action for an ordinary gauge instanton, but rather as the normalization

of a D(−1)3 disk, since there exists no instanton solutions for ordinary commutative U(1)

gauge theory.
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It is interesting to note that the coefficient (3−N1−N2) and the instanton disk vacuum

amplitude obtained in this case have the same appearance as one would expect the one-loop

β-function coefficient and the instanton action to have for a noncommutative U(1) gauge

theory with N1 + N2 flavors [56 – 58]. Moreover, it is known that noncommutativity in

U(N) gauge theories has a particular dramatic effect for the case N = 1 since it is only on

a noncommutative background that abelian gauge theories become non-trivial and allow

for instanton solutions [59]. We leave the investigation concerning the possible relation to

instantons in noncommutative gauge theories for future work.4

If we did not have any fractional D3 branes at all at node 3, only the chiral superfields

Φ12 and Φ21 would exist [17]. In that case, there are no charged bosonic zero modes, the

instanton moduli action in (2.3) vanishes and we only have the couplings in the last line

of (2.4) left. Hence, if it was not for the two neutral fermionic λα̇-fields, the moduli space

integral would yield a contribution of the form det[Φ21] det[Φ12] for N1 = N2, since the

charged fermionic zero modes appear symmetrically. We note that this term has the same

dimension as the chiral superfields should have according to (3.6). The problem with the

case when there are no fractional D3 branes at node 3 is of course that the λα̇-modes make

the integral vanish since they do not appear in the effective moduli action.

As will be shown in the following section, a non-perturbative superpotential term like

det[Φ21] det[Φ12] is exactly what we find when we evaluate the moduli space integral for

the case when we do have a single fractional D3 brane at node 3. In this case, there is no

longer any problems with the unwanted λα̇-modes, since we now have charged bosonic zero

modes which make these neutral fermions appear as Lagrange multipliers, implementing

constraints completely analogous to the fermionic ADHM constraints one obtains for or-

dinary gauge instantons in the ADHM limit. The difference in this configuration is that

the instanton here can not be interpreted as an ordinary gauge instanton, but rather as a

stringy one.

4. Evaluating the moduli space integral

In this section, we will explicitly evaluate the instanton moduli space integral for the stringy

N3 = 1 configuration described above,

W s
np = Λ3−N1−N2

string

∫

d3Dcd2ωα̇d2ωα̇dµ33dµ33d
N1µ13d

N1µ31d
N2µ23d

N2µ32

× δ2
F

(

µ33ωα̇ + ωα̇µ33

)

e−S1−S2 (4.1)

where we have performed the integrals over the λα̇ variables in (2.3) and thereby imple-

mented the fermionic ADHM constraints in terms of two δ-functions. Let us also express

S2, from (2.4), in the following way

S2 =
1

2
ωα̇{ΦΦ}ωα̇ +

i

2
µ31Φ13µ33 −

i

2
µ33Φ31µ13 +

i

2
µ32Φ23µ33 −

i

2
µ33Φ32µ23

− i

2
µ32Φ21µ13 +

i

2
µ31Φ12µ23 (4.2)

4The author would like to thank Jose Francisco Morales for pointing out this possible relation.
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where {ΦΦ} = Φ31Φ13 + Φ31Φ13 + Φ32Φ23 + Φ32Φ23.

4.1 Fermionic integration

Due to the fermionic nature of the two δ-functions brought down by the λ-integration, we

can simply drop the “δF” and obtain the following two terms,

(

µ33ω1̇ + ω1̇µ33

)(

µ33ω2̇ + ω2̇µ33

)

= µ33

(

ω1̇ω2̇ − ω1̇ω2̇

)

µ33 = µ33

(

ω1̇ω1̇ + ω2̇ω2̇

)

µ33 (4.3)

where we have raised indices using ωα̇ = ǫα̇β̇ωβ̇, with ǫ1̇2̇ = −ǫ2̇1̇ = −1. In (4.3) we have

also used the fact that the terms in which either µ33 or µ33 appear twice vanish since these

Grassmann variables anticommute to zero. Since the terms in (4.3) appear in front of the

exponential in (4.1), these terms soak up both µ33 and µ33, implying that we are already

done with the integration over these two variables. This means that, in order to get a

non-vanishing result, we can only expand the terms in the exponent of (4.1) containing

µ33 and µ33 to zeroth order. Thus, we forget about the last four couplings in the first

line of (4.2) and instead study the last two couplings which include all the remaining

charged fermionic moduli fields, µ32, µ13, µ31 and µ23. Since these remaining fields appear

symmetrically we must expand both these terms to N th
1 =N th

2 order to be able to soak

up the remaining charged fermionic moduli fields. Hence, from the fermionic integration

we get the constraint

N1 = N2 . (4.4)

The integration over the remaining fermions brings down determinants of Φ21 and Φ12 and

we arrive at the following result,

W s
np = Λ3−2N

string det[Φ21] det[Φ12] × I for N1 = N2 = N (4.5)

where the remaining task is to evaluate the following bosonic integral,

I =

∫

d3Dcd2ωα̇d2ωα̇
(

ω1̇ω1̇ + ω2̇ω2̇

)

eiDc(ωα̇(τc)β̇
α̇
ω

β̇
)− 1

2
ωα̇{ΦΦ}ωα̇ . (4.6)

Note that dimensional analysis of (4.5) tells us that the bosonic integral I must be dimen-

sionless. Hence, since I can only depend on the dimensionful quantity {ΦΦ}, we conclude

that I must be a simple number, independent of {ΦΦ}. In the following section we will

show that this number is non-zero.

4.2 Bosonic integration

Since the charged bosonic moduli fields appear quadratically in the exponent of (4.6) we

can simply insert the the components of the three Pauli sigma matrices τ c and arrive at

the following expression for the bosonic integral,

I =

∫

d3Dd2ωd2ω
(

− ∂

∂M1
− ∂

∂M4

)

exp

(

−
[

ω1̇ ω2̇
]

[

M1 M2

M3 M4

][

ω1̇

ω2̇

])

(4.7)
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where we have denoted M1 = −iD3 + 1
2{ΦΦ}, M2 = −iD1 − D2, M3 = −iD1 + D2 and

M4 = iD3 + 1
2{ΦΦ}. Performing the Gaussian integrals over the charged bosonic moduli

fields and taking the derivatives with respect to M1 and M4, we obtain

∫

d3D
(

− ∂

∂M1
− ∂

∂M4

) 1

M1M4 − M3M2
=

∫

d3D
{ΦΦ}

[

D2 + 1
4{ΦΦ}2

]2 (4.8)

where we have inserted back the expressions for the M ’s and denoted D2 =
∑3

c=1(D
c)2. If

we now change to spherical coordinates (
∫

d3D = 4π
∫

dD D2), rescale D̃ = 2D
{ΦΦ}

and use

the fact that
∫∞
0 dD̃ D̃2

[D̃2+1]2
= π

4 , we can conclude that the bosonic integral I from (4.6)

only results in an irrelevant numerical factor which can be absorbed in the prefactor Λstring

in (4.5).

Thus, we have now shown that the final result from the complete moduli space integral

was given in (4.5) and reads

W s
np = Λ3−2N

string BB̃ (4.9)

for N1 = N2 = N . In (4.9), we interpret the determinants from (4.5) as baryons,

B = det[Φ21] and B̃ = det[Φ12], and the superpotential term (4.9) as a stringy instanton

generated baryonic mass term.5 Note that we have generated a holomorphic superpotential

term without using the D-term constraints for the matter fields, although we, of course,

have to implement them in order to ensure supersymmetry.

Let us summarize our findings in slightly more general terms: We assumed that we

had a background geometry with (at least) three non-trivial cycles, with two of them

wrapped by space-filling D branes such that they, on their world volume, realized an N = 1

U(N)×U(N) gauge theory with bi-fundamental matter. In that case, a non-perturbative

superpotential term like (4.9) was generated by wrapping a single space-filling D brane

together with an instanton ED brane on the third cycle. We believe that this result is

quite general and should be applicable to many D brane systems in various backgrounds.

5. Implications for the gauge dynamics

We have seen in the previous section that it is possible to generate a non-perturbative

superpotential term for a U(N)×U(N) gauge theory with an additional U(1) factor which

has an instanton associated to it. In this section we will discuss how we should expect the

dynamics to change when we include the stringy instanton generated superpotential term

in (4.9).

In an attempt to make contact with the standard analysis of SQCD, let us for the

moment consider the same configuration as discussed above but in a background for which

we can take the limit where the volume of the second cycle, upon which N2 = N D3

branes are wrapped, is large in comparison to the first cycle. In this limit, the U(N) group

5Note that such a mass term can also be written as the determinant of the meson field, det[M] =

det[Φ21Φ12], and we will in fact show in the next section that the relation det[M] = BB̃ can be obtained

as an equation of motion.
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associated to this large cycle will, together with the IR free U(1) factor from the third

cycle, correspond to global symmetries. Thus, this U(N)×U(1) symmetry acts as a flavor

group for the N1 = N D3 branes, wrapped on the (small) first cycle, that constitute the

U(N) gauge group.

If we now view this U(N)×U(1) flavor group as a broken version of a U(N + 1) group,

we see that this configuration is at low energies reminiscent of the Nf = Nc + 1 (where

Nc = N) SQCD case with gauge group SU(N) and flavor group SU(N + 1)L×SU(N + 1)R
(in addition to the global non-anomalous U(1)B and U(1)R factors). In the particular

SQCD case for which Nf = Nc + 1, we expect confinement but unbroken chiral symmetry

at the origin of the moduli space [60]. From a non-perturbative analysis of this specific

SQCD theory, in the absence of a tree level superpotential, we know that the classical

moduli space, which in this case is the same as the quantum moduli space, is described by

mesons MF
F ′ and baryons BF , B̃F (where the flavor indices F,F ′ take values 1,. . . ,N + 1)

supplemented by certain constraints. These constraints can be implemented as equations

of motion from the following non-perturbative superpotential term [60],

Wnp = Λ−2N+1
(

MF
F ′BF B̃F ′ − det[MF

F ′ ]
)

. (5.1)

In order to relate (5.1) to the fields we have used in this paper, we denote the compo-

nents of the quarks as follows,

QF
c = (Φf

21c,Φ31c) : (N + 1,1)

Q̃c
F = (Φc

12f ,Φc
13) : (1,N + 1) (5.2)

where the gauge index c takes values 1,. . . ,N and where the index f = 1, · · · , N enumerates

the first N flavors (out of the N + 1). In (5.2), we have also indicated the representations

of the SU(N +1)L×SU(N +1)R part of the flavor group the quarks QF
c and Q̃c

F correspond

to. The meson and baryon fields are then given by

MF
F ′ = QF

c Q̃c
F ′ : (N + 1,N + 1)

BF = ǫFF1F2···FN
ǫc1···cN QF1

c1 QF2

c2 · · ·QFN
cN

: (N + 1,1)

B̃F = ǫFF1F2···FN ǫc1···cN
Q̃c1

F1
Q̃c2

F2
· · · Q̃cN

FN
: (1,N + 1) (5.3)

where we have again indicated the corresponding representations under the SU(N +

1)L×SU(N + 1)R gobal symmetry.

Since our D brane configuration is a Z2 × Z2 orbifold projection of the N = 4 theory

with space-filling D branes occupying three nodes, we must also include the cubic tree level

superpotential,

Wtree = Φf
23Φ31cΦ

c
12f − Φf

21cΦ
c
13Φ32f (5.4)

where both the gauge index c and the flavor index f take values 1, . . . , N . The

tree level superpotential in (5.4), which include the gauge singlet fields Φf
23 and Φ32f ,

explicitly breaks the SU(N + 1)L×SU(N + 1)R part of the flavor group down to

(SU(N)×U(1))L×(SU(N)×U(1))R. However, we are still in the SQCD regime where

Nf = Nc + 1 and we will assume that the non-perturbative superpotential in (5.1) persists
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also in the presence of the tree level terms6 in (5.4), although it will now describe fields

with flavor indices decomposed into representations of SU(N)×U(1). The mesons MF
F ′ are

decomposed as follows,

Mf
f ′ = Φf

21cΦ
c
12f ′ : (N,N)

Mf = Φf
21cΦ

c
13 : (N,1)

Mf = Φ31cΦ
c
12f : (1,N)

M = Φ31cΦ
c
13 : (1,1) (5.5)

where we have indicated the various meson representations under the SU(N)L×SU(N)R
part of the broken flavor group. The baryons BF and B̃F decompose into the following

SU(N)L×SU(N)R representations,

Bf = ǫff1f2···fN−1
ǫc1···cN Φ31c1Φ

f1

21c2
· · ·ΦfN−1

21cN
: (N,1)

B̃f = ǫff1f2···fN−1ǫc1···cN
Φc1

13Φ
c2
12f1

· · ·ΦcN

12fN−1
: (1,N)

B = ǫf1···fN
ǫc1···cN Φf1

21c1
· · ·ΦfN

21cN
: (1,1)

B̃ = ǫf1···fN ǫc1···cN
Φc1

12f1
· · ·ΦcN

12fN
: (1,1) . (5.6)

In order to see what effect the stringy instanton generated superpotential term

from (4.9) might have on the SQCD theory described above, let us write out the total

superpotential in terms of the decomposed fields in (5.5) and (5.6), and simply add the

non-perturbative superpotential term from (4.9),

Wtree + Wnp + W s
np =

(

Λ−2N+1M + Λ−2N+3
string

)

BB̃ − Λ−2N+1Mdet[Mf
f ′ ] + · · · . (5.7)

The dots in (5.7) refer to terms which are not important for our discussion, for example,

those that include the fields Mf and Mf which are both set to zero by the equations of

motion for the fields Φf
23 and Φ32f , see (5.4). Note that the stringy term affects only the

term from (5.1) which is of the same form and the effect can be seen as a shift in the flavor

singlet field M, without removing the moduli space singularities. Further note that if we

interpret the stringy superpotential from (4.9) as det[Mf
f ′ ], instead of BB̃, we get a similar

shifting effect for M,

Wtree + Wnp + W s
np =

(

− Λ−2N+1M + Λ−2N+3
string

)

det[Mf
f ′ ] + Λ−2N+1M BB̃ · · · . (5.8)

Regardless of how we interpret the stringy superpotential in (4.9), the equation of motion

for M gives the constraint, det[Mf
f ′ ] = BB̃.

From (5.7) we see that the stringy instanton would break R-symmetry unless we can

assign R charge zero to the field M. And as expected in this non-chiral gauge theory, there

is a non-anomalous R-charge assignment such that the fields Φ31c and Φc
13 have R-charge

zero, see table 2. Thus, by including the stringy instanton, we fix the the non-anomalous

U(1)R current uniquely. Moreover, there is a non-anomalous axial U(1)A symmetry, under
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U(1)R

Φ12
1
N

Φ21
1
N

Φ13 0

Φ31 0

Φ23 2- 1
N

Φ32 2- 1
N

Table 2: The non-anomalous R-charge assignment.

which the charge of BB̃ is compensated by the opposite charge of M, but which is here

non-perturbatively broken by the stringy instanton.

In conclusion, we have in this paper shown that it is possible to generate an interesting

non-perturbative superpotential term (4.9) by a stringy instanton in a simple Z2 × Z2

orbifold background without introducing orientifold planes. In more generic Calabi-Yau

backgrounds, it has been shown that similar terms as the one we have found here will

have dramatic effects on the gauge dynamics and, in some cases, give rise to dynamical

supersymmetry breaking [16, 34 – 36]. We regard this computation as an example of how

such an effect could arise in more realistic theories.
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